Hydrodynamics of a Novel Design Circulating Fluidized Bed Steam Reformer Operating in the Dense Suspension Upflow Regime

Author:

Mousa Moataz Bellah M.1,Fateen Seif-Eddeen K.1,Ibrahim Essam A.2

Affiliation:

1. Chemical Engineering Department, Faculty of Engineering, Cairo University, Giza 12316, Egypt

2. The University of Texas of the Permian Basin, Odessa, TX 79762, USA

Abstract

Circulating fluidized bed steam reformers (CFBSR) represent an important alternative for hydrogen production, a promising energy carrier. Although the reactor hydrodynamics play crucial role, modeling efforts to date are limited to one-dimensional models, thus ignoring many of the flow characteristics of fluidized beds that have strong effects on the reactor efficiency. The flow inside the riser is inherently complex and requires at least two-dimensional modeling to capture its details. In the present work, the computational fluid dynamics (CFD) simulations of the hydrodynamics of the riser part of a novel CFBSR were carried out using two-phase Eulerian-Eulerian approach coupled with kinetic theory of granular flow and K-ε model. Cold flow simulations were carried under different fluidization regimes. It was found that catalyst of Geldart's type “A” particle is more efficient for flow inside the catalytic reactor and dense suspension upflow (DSU) fluidization regime yields the best homogeneous catalyst distribution in the riser and thus best reactor performance. The optimum range for catalyst flux was found to be higher than 1150 kg/m2·s for a gas flux of 6.78 kg/m2·s. It was also noted that the value of 500 Kg/m2·s for catalyst flux represents the critical value below which the riser will operate under pneumatic transport regime.

Publisher

Hindawi Limited

Subject

General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3