Energy Consumption Prediction for 3-RRR PPM through Combining LSTM Neural Network with Whale Optimization Algorithm

Author:

Gao Yin1ORCID,Chen Ke1,Gao Hong2,Zheng Hongmei1,Wang Lei2ORCID,Xiao Ping23

Affiliation:

1. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China

2. School of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China

3. School of Engineering, University of Bridgeport, Bridgeport, CT 06604, USA

Abstract

In the process of minimizing the energy consumption of a 3-RRR planar parallel manipulator (3-RRR PPM) and even general parallel kinematic manipulators, obtaining optimal results usually depends on particular functional relation between the instantaneous position of the moving platform and the kinetic time, which is called a displacement model (DM). Nevertheless, it is likely that although the movement time and path of a moving platform are the same, different amounts of energy are consumed for different DMs of the moving platform. To address this, a method of using long short-term memory neural network (LSTM-NN) instead of a complex theoretical model to predict the energy consumption of a 3-RRR PPM was presented. Subsequently, inverse dynamic equations of 3-RRR PPM were established based on the Newton–Euler method and solved using QR decomposition. Meanwhile, energy consumption between any two points in workspace of the 3-RRR PPM was programmed to provide the LSTM-NN with abundant precise training data. In view of time-varying characteristics of energy consumption prediction, the network architecture was developed based on the principle of LSTM-NN, and root-mean-square error (RMSE) was taken as the loss function. After acquiring training data, the RMSE of the LSTM-NN reached 0.00041 using whale optimization algorithm (WOA) with no need for the gradient of the loss function, so the lack of solving precision in training LSTM-NN was effectively improved. Finally, two different DMs of a moving platform with the same path and movement time were chosen to compare the total energy consumption of the 3-RRR PPM from the simulations, predictions, and experiments. The results showed that the relative error between predicted and experimental data was less than 2.50%. Therefore, the energy consumption prediction based on the LSTM-NN will be useful for achieving the intelligent application of 3-RRR PPMs.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3