An Event-Driven Object Localization Method Assisted by Beacon Mobility and Directional Antennas

Author:

Hu Qingsong123ORCID,Wu Lixin123,Cao Can124,Zhang Shen12

Affiliation:

1. Internet of Things (Perception Mine) Research Center, China University of Mining & Technology, Xuzhou 221008, China

2. The National and Local Joint Engineering Laboratory of Internet Application Technology on Mine, China University of Mining & Technology, Xuzhou 221008, China

3. School of Environment Science and Spatial Informatics, China University of Mining & Technology, Xuzhou 221008, China

4. School of Information and Electric Engineering, China University of Mining & Technology, Xuzhou 221008, China

Abstract

An event-driven object localization method based on directional antennas is proposed in this paper. First the event occurrence spot is divided into four sections. Then low altitude UAV (Unmanned Aerial Vehicle) is employed to deploy DAWSN (Wireless Sensor Networks for Disaster Assistance) for urgent observation and communication. By means of a mobile anchor with four directional antennas and a GPS module, obstacle avoidance traverse in DAWSN is realized and the locations during mobility are broadcast. Unknown nodes take these locations as virtual anchors and project them onto a virtual motion path, and then the coordinates of unknown nodes are solved with extended directional localization method. This range-free method does not require plenty of anchor nodes and complicated computation. With small positioning error and large positionable node ratio (PNR), it allows the virtual anchor to move along any curve path and can be utilized under the event-driven scenario to provide self-localization for DAWSN.

Funder

National Basic Research Program of China

Publisher

SAGE Publications

Subject

Computer Networks and Communications,General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3