A Novel Encoder-Decoder Model for Multivariate Time Series Forecasting

Author:

Zhang Huihui12ORCID,Li Shicheng3ORCID,Chen Yu3ORCID,Dai Jiangyan2ORCID,Yi Yugen3ORCID

Affiliation:

1. School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China

2. School of Computer Engineering, Weifang University, Weifang, China

3. School of Software, Jiangxi Normal University, Nanchang, China

Abstract

The time series is a kind of complex structure data, which contains some special characteristics such as high dimension, dynamic, and high noise. Moreover, multivariate time series (MTS) has become a crucial study in data mining. The MTS utilizes the historical data to forecast its variation trend and has turned into one of the hotspots. In the era of rapid information development and big data, accurate prediction of MTS has attracted much attention. In this paper, a novel deep learning architecture based on the encoder-decoder framework is proposed for MTS forecasting. In this architecture, firstly, the gated recurrent unit (GRU) is taken as the main unit structure of both the procedures in encoding and decoding to extract the useful successive feature information. Then, different from the existing models, the attention mechanism (AM) is introduced to exploit the importance of different historical data for reconstruction at the decoding stage. Meanwhile, feature reuse is realized by skip connections based on the residual network for alleviating the influence of previous features on data reconstruction. Finally, in order to enhance the performance and the discriminative ability of the new MTS, the convolutional structure and fully connected module are established. Furthermore, to better validate the effectiveness of MTS forecasting, extensive experiments are executed on two different types of MTS such as stock data and shared bicycle data, respectively. The experimental results adequately demonstrate the effectiveness and the feasibility of the proposed method.

Funder

Natural Science Foundation of Shandong Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3