Hydrate Dissociation Model with Time Fractional Derivative

Author:

Fang Xinyu12,Lian Hairong1ORCID,Luo Wanjing3ORCID,Liu Mingzhu4,Chen Changfu4,Wang Qian1

Affiliation:

1. School of Science, China University of Geosciences (Beijing), Beijing 100083, China

2. Unconventional Petroleum Research Institute, State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China

3. School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China

4. College of Water Resources and Environment, China University of Geosciences(Beijing), Beijing 100083, China

Abstract

In this paper, we shall investigate fractional partial differential equations with fractional moving boundary condition to study the dissociation of natural gas hydrate under heat injection. The moving boundary separates the hydrate reservoir into the dissociated zone and the hydrate one. By using the self-similar transformation and Wright function, we obtain the explicit solutions for two zones. We present simulations with steam and hot water injection and show the dissociation temperature in graphical mode from injection temperature to reservoir temperature with respect to the time, distance, and fractional order. Our analysis of fractional model turns out to be a successful generalization of the classical one; i.e., it can well describe the dissociation of natural gas hydrate and is theoretically consistent with the existing integer hydrate dissociation model. When the factional order tends to 1, the “limit solution” becomes the classical one.

Funder

Guangdong Major Project of Basic and Applied Basic Research

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3