Classification and Interpretability of Mild Cognitive Impairment Based on Resting-State Functional Magnetic Resonance and Ensemble Learning

Author:

Hu Mengjie12ORCID,Yu Yang1,He Fangping1,Su Yujie1,Zhang Kan1,Liu Xiaoyan1,Liu Ping1,Liu Ying2,Peng Guoping1ORCID,Luo Benyan1ORCID

Affiliation:

1. Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China

2. Department of General Practice, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China

Abstract

The combination and integration of multimodal imaging and clinical markers have introduced numerous classifiers to improve diagnostic accuracy in detecting and predicting AD; however, many studies cannot ensure the homogeneity of data sets and consistency of results. In our study, the XGBoost algorithm was used to classify mild cognitive impairment (MCI) and normal control (NC) populations through five rs-fMRI analysis datasets. Shapley Additive exPlanations (SHAP) is used to analyze the interpretability of the model. The highest accuracy for diagnosing MCI was 65.14% (using the mPerAF dataset). The characteristics of the left insula, right middle frontal gyrus, and right cuneus correlated positively with the output value using DC datasets. The characteristics of left cerebellum 6, right inferior frontal gyrus, opercular part, and vermis 6 correlated positively with the output value using fALFF datasets. The characteristics of the right middle temporal gyrus, left middle temporal gyrus, left temporal pole, and middle temporal gyrus correlated positively with the output value using mPerAF datasets. The characteristics of the right middle temporal gyrus, left middle temporal gyrus, and left hippocampus correlated positively with the output value using PerAF datasets. The characteristics of left cerebellum 9, vermis 9, and right precentral gyrus, right amygdala, and left middle occipital gyrus correlated positively with the output value using Wavelet-ALFF datasets. We found that the XGBoost algorithm constructed from rs-fMRI data is effective for the diagnosis and classification of MCI. The accuracy rates obtained by different rs-fMRI data analysis methods are similar, but the important features are different and involve multiple brain regions, which suggests that MCI may have a negative impact on brain function.

Funder

Key R & D Program of Zhejiang

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3