Double-Diffusive MHD Viscous Fluid Flow in a Porous Medium in the Presence of Cattaneo-Christov Theories

Author:

Falodun Bidemi Olumide1ORCID,Omowaye Adeola John2ORCID,Oyelami Funmilayo Helen3ORCID,Emadifar Homan4ORCID,Hamoud Ahmed A.5ORCID,Atif S. M.6ORCID

Affiliation:

1. Department of Computer Science/Mathematics, Novena University, Ogume, Delta State, Nigeria

2. Department of Mathematical Science, Federal University of Technology Akure, Akure, Nigeria

3. Department of Mathematical and Physical Sciences, Afe Babalola University, Ado Ekiti, Nigeria

4. Department of Mathematics, Hamedan Branch, Islamic Azad University, Hamedan, Iran

5. Department of Mathematics, Taiz University, Taiz 96704, Yemen

6. Department of Mathematics, Roots College International, DHA 1, Islamabad, Pakistan

Abstract

The Cattaneo-Christov model will be used to examine the significance of heat generation, viscous dissipation, and thermal radiation on a double-diffusive MHD flow in this study. In this study, it was discovered that heat and mass transfer can be affected by nonlinear buoyancy significance. The flow direction was subjected to a uniform magnetic field. A set of partial differential equations governs the current design (PDEs). In order to simplify these equations, they are converted into ordinary differential equations (ODEs). In order to numerically solve the nonlinear ODEs, the spectral relaxation method (SRM) is utilized. In order to decouple and linearize the equation sets, the SRM employs the Gauss-Seidel relaxation method. Geothermal power generation and underground storage systems are just a few examples where this research could be put to use. When compared to previous findings, the current outcomes were discovered to be closely related. Owing to an increase in Lorentz force, the imposed magnetic field slows down fluid motion. Viscosity dissipation and heat generation all contribute to the formation of an ever-thicker thermal boundary layer. When the Cattaneo-Christov models are used, the thermal and concentration boundary layers get a lot thicker.

Publisher

Hindawi Limited

Subject

Computer Science Applications,General Engineering,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3