BDNF Protein and BDNF mRNA Expression of the Medial Prefrontal Cortex, Amygdala, and Hippocampus during Situational Reminder in the PTSD Animal Model

Author:

Chang Shao-Han12,Yu Ying Hao34,He Alan3,Ou Chen Yin3,Shyu Bai Chuang2ORCID,Huang Andrew Chih Wei3ORCID

Affiliation:

1. Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan

2. Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan

3. Department of Psychology, Fo Guang University, Yilan County 26247, Taiwan

4. Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan

Abstract

Whether BDNF protein and BDNF mRNA expression of the medial prefrontal cortex (mPFC; cingulated cortex area 1 (Cg1), prelimbic cortex (PrL), and infralimbic cortex (IL)), amygdala, and hippocampus (CA1, CA2, CA3, and dentate gyrus (DG)) was involved in fear of posttraumatic stress disorder (PTSD) during the situational reminder of traumatic memory remains uncertain. Footshock rats experienced an inescapable footshock (3 mA, 10 s), and later we have measured fear behavior for 2 min in the footshock environment on the situational reminder phase. In the final retrieval of situational reminder, BDNF protein and mRNA levels were measured. The results showed that higher BDNF expression occurred in the Cg1, PrL, and amygdala. Lower BDNF expression occurred in the IL, CA1, CA2, CA3, and DG. BDNF mRNA levels were higher in the mPFC and amygdala but lower in the hippocampus. The neural connection analysis showed that BDNF protein and BDNF mRNA exhibited weak connections among the mPFC, amygdala, and hippocampus during situational reminders. The present data did not support the previous viewpoint in neuroimaging research that the mPFC and hippocampus revealed hypoactivity and the amygdala exhibited hyperactivity for PTSD symptoms. These findings should be discussed with the previous evidence and provide clinical implications for PTSD.

Funder

Academia Sinica

Publisher

Hindawi Limited

Subject

Clinical Neurology,Neurology,General Medicine,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3