Explosion Disaster Distribution Characteristics and Outlet Open-Close Effect of Turning Roadway

Author:

Lv Pengfei1ORCID,Ju Minghua1ORCID,Zhang Jiaxu1ORCID,Pang Lei1ORCID,Yang Kai1ORCID,Liu Kaiyuan1ORCID,Liu Mengyuan1ORCID

Affiliation:

1. Safety Engineering College, Beijing Institute of Petrochemical Technology, Beijing 102617, China

Abstract

In this study, under the open-close conditions of a roadway outlet, ANSYS/LS-DYNA was used to build models of explosions on roadways with 0° and 90° bending angles, to compare and analyze the shock wave propagation characteristics and variation laws. Combined with the damage degree classification of shock wave overpressure to human body, the destructive effect zoning of explosion in roadway under the condition of opening and closing of roadway entrance was studied. The results showed that as the bending angle increased, the peak overpressure attenuation of the shock waves became prominent, and the arrival time for the same distance increased. The closure of the roadway outlet had a distance effect on the peak overpressure of the shock waves. The explosion shock waves caused the peak overpressure to rise sharply owing to the reflection and stacking effects near the closure. In the far zone of the outlet, the attenuation of the shock waves was too fast and had minimal impact on the peak overpressure. In addition, the existence of the roadway closure increased the damage area and the severity of the blast wave to human body as a whole. With an increase in the bending angle, the damage range and severity decreased.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical study on the influence of venting interlayer structure on the explosion venting effects;International Communications in Heat and Mass Transfer;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3