Effective Material Basis and Mechanism Analysis of Compound Banmao Capsule against Tumors Using Integrative Network Pharmacology and Molecular Docking

Author:

He Tian-Mu1ORCID,Liu Jing-Xian1ORCID,Duan Can-Can23ORCID,Li Xiao-Fei12ORCID,Zhang Jian-Yong23ORCID

Affiliation:

1. Basic Medicine School, Zunyi Medical University, Zunyi, China

2. School of Pharmacy, Zunyi Medical University, Zunyi, China

3. Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, China

Abstract

Purpose. Compound banmao capsule (CBC), a well-known traditional Chinese medical material, is known to inhibit various tumors. However, its material basis and pharmacological mechanisms remain to be elucidated. This study aimed to investigate the effective material basis and mechanisms of action of CBC against tumors. Methods. Active compounds of CBC were identified using public database and reports to build a network. The corresponding targets of active compounds were retrieved from online databases, and the antitumor targets were identified by GeneCards database. The antitumor hub targets were generated via protein-protein interaction analysis using String, and key compounds and targets from the integrative network were detected by molecular docking and ADMET. Top targets in hepatocellular carcinoma were confirmed by quantitative real-time PCR (qPCR). Finally, the multivariate biological network was built to identify the integrating mechanisms of action of CBC against tumor cells. Results. A total of 128 compounds and 436 targets of CBC were identified successfully. Based on the generated multivariate biological network analysis, 25 key compounds, nine hub targets, and two pathways were further explored. Effective material bases of cantharidin, baicalein, scutellarin, sesamin, and quercetin were verified by integrative network analysis. PTGS2, ESR1, and TP53 were identified as hub targets via multivariate biological network analysis and confirmed using qPCR. Furthermore, VEGF and estrogen signaling pathways seem to play a role in the antitumor activity of CBC. Thus, breast cancer may be a potential clinical indication of CBC. Conclusion. This study successfully identified the material basis of CBC and its synergistic mechanisms of action against tumor cells.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3