Acute Myeloid Leukemia (AML) Detection Using AlexNet Model

Author:

Shaheen Maneela1,Khan Rafiullah1ORCID,Biswal R. R.2ORCID,Ullah Mohib1,Khan Atif3ORCID,Uddin M. Irfan4,Zareei Mahdi2ORCID,Waheed Abdul56ORCID

Affiliation:

1. Institute of Computer Science and Information Technology, The University of Agriculture, Peshawar, Pakistan

2. Tecnologico de Monterrey, School of Engineering and Sciences, Zapopan, Mexico

3. Department of Computer Science, Islamia College Peshawar, Peshawar, KP, Pakistan

4. Institute of Computing, Kohat University of Science and Technology, Kohat, Pakistan

5. Department of Information Technology, Hazara University Mansehra, Mansehra 21120, Pakistan

6. School of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea

Abstract

Acute Myeloid Leukemia (AML) is a kind of fatal blood cancer with a high death rate caused by abnormal cells’ rapid growth in the human body. The usual method to detect AML is the manual microscopic examination of the blood sample, which is tedious and time-consuming and requires a skilled medical operator for accurate detection. In this work, we proposed an AlexNet-based classification model to detect Acute Myeloid Leukemia (AML) in microscopic blood images and compared its performance with LeNet-5-based model in Precision, Recall, Accuracy, and Quadratic Loss. The experiments are conducted on a dataset of four thousand blood smear samples. The results show that AlexNet was able to identify 88.9% of images correctly with 87.4% precision and 98.58% accuracy, whereas LeNet-5 correctly identified 85.3% of images with 83.6% precision and 96.25% accuracy.

Funder

Instituto Tecnológico y de Estudios Superiores de Monterrey

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference40 articles.

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3