Long Noncoding RNA Expression Profiles of Periodontal Ligament Stem Cells from the Periodontitis Microenvironment in Response to Static Mechanical Strain

Author:

Liu Jia1,Zhao Yan1,Niu Qiannan1,Qiu Ni2,Liu Shuangyun3,Li Chunrong1,Li Cuixia1,Miao Pei1,Yan Libo1,Li Qiang4ORCID,Jin Zuolin1ORCID

Affiliation:

1. State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China

2. Department of Stomatology, 920 Hospital of PLA, Kunming, Yunnan 650032, China

3. Department of Stomatology, 260 Hospital of PLA, Shijiazhuang, Hebei 050041, China

4. State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of General Dentistry & Emergency, China

Abstract

During the period of orthodontic tooth movement, periodontal ligament stem cells (PDLSCs) play an important role in transducing mechanical stimulation and tissue remodeling. However, our previous studies verified that the periodontitis microenvironment causes damage to the biological functions of PDLSCs and abnormal mechanical sensitivity. Long noncoding RNAs (lncRNAs) participate in the inflammatory pathogenesis and development of many diseases. Whether lncRNAs are abnormally expressed in PDLSCs obtained from periodontal tissues of periodontitis patients (PPDLSCs) and whether putative lncRNAs participate in the mechanotransductive process in PDLSCs remain poorly understood. First, we subjected PDLSCs obtained from healthy periodontal tissues (HPDLSCs) and PPDLSCs to static mechanical strain (SMS) with 12% elongation at 0.1 Hz frequency using an FX-4000T system and screened overall lncRNA profiles in both cell types by microarray. Among lncRNAs with a fold change FC > 20.0 , 27 lncRNAs were upregulated in strained HPDLSCs, and 16 lncRNAs (9 upregulated and 7 downregulated) were detected in strained PPDLSCs. For mRNAs with FC > 20.0 , we detected 25 upregulated mRNAs and one downregulated mRNA in strained HPDLSCs and 7 upregulated and 5 downregulated mRNAs in strained PPDLSCs. Further enrichment analysis showed that, unlike HPDLSCs with annotations principally involving transduction-associated signaling pathways, dysregulated mRNAs in PPDLSCs are mainly responsible for pathological conditions. Moreover, coexpressed lncRNA-mRNA networks confirmed the pathological state and exacerbated inflammatory conditions in strained PPDLSCs. Taken together, when compared with strained HPDLSCs, various lncRNAs and mRNAs were dysregulated in PPDLSCs under mechanical forces, implicating the response of lncRNAs in PPDLSCs to mechanical stress. Moreover, we provide potential lncRNA targets, which may contribute to future intervention strategies for orthodontic treatment in periodontitis patients.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3