Effects of Micropore Group Spacing and Irrigation Amount on Soil Respiration and Yield of Tomato with Microsprinkler Irrigation under Plastic Film in Greenhouse

Author:

Zhang Mingzhi12ORCID,Yan Xiaoqun3,Lu Zhenguang2ORCID,Bai Qingjun1ORCID,Zhang Yushun2,Wang Donglin4,Zhou Yuangang5,Yin Yuqing2

Affiliation:

1. State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China

2. Henan Provincial Water Conservancy Research Institute, Zhengzhou 450000, China

3. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China

4. School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou, Henan, China

5. Xi’an Water Group Co. Ltd., Xi’an, Shaanxi 710061, China

Abstract

Microsprinkler irrigation under a plastic film in the greenhouse (MSPF) is a water-saving way which adopts the porous discharge form of a pipe under the plastic film. The effects of different micropore group spacings (L1:30 cm, L2: 50 cm) and irrigation amounts [I1: 0.7 Epan; I2: 1.0 Epan; and I3: 1.2 Epan (Epan is the diameter of 20 cm standard pan evaporation, mm)] of the MSPF on the soil respiration and yield of tomato were studied. A completely randomized trial design was used, and drip irrigation under plastic film (CK1) and microsprinkler irrigation (CK2) were also used as controls. The results showed that under the same irrigation amount, the soil respiration rate, tomato yield, and water use efficiency (WUE) of MSPF in spring and autumn are 8.09% and 6.74%, 19.39% and 4.54%, and 10.03% and 2.32% higher than those of CK1, respectively; they are significantly increased by 31.02% and 20.46%, 49.22% and 38.38%, and 58.05% and 34.66% compared with those of CK2, respectively, indicating that MSPF increased the amount of CO2 emission, but tomato yield and WUE were effectively improved, and a dynamic balance was reached among them. Compared with the 50 cm micropore group spacing, the spring and autumn tomato yields and WUE under the 30 cm micropore group spacing were significantly increased by 16.00% and 13.01% and 20.85% and 14.25%, respectively, and the micropore group spacing had no significant effect on the soil respiration rate in both root and nonroot zones. When the I increased from 0.7 Epan to 1.2 Epan, the soil respiration rate and yield in the root and nonroot zones of the spring and autumn tomatoes increased at first and then decreased, and the WUE showed a decreasing trend. The relationship of soil respiration rate between the nonroot and root zones obeys a logarithmic function, and the soil respiration rate in the nonroot zone has a quadratic curve relationship with the yield of tomato. This study can provide data support for the development of water-saving irrigation and yield increase of facility agricultural tomato and the analysis of the soil carbon cycling mechanism.

Funder

Guangzhou Science and Technology Program key projects

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3