Effect of Bushen Huoxue Prescription on Cognitive Dysfunction of KK-Ay Type 2 Diabetic Mice

Author:

Zhao Shao-Yang12ORCID,Zhao Huan-Huan3,Hao Ting-Ting1,Li Wei-Wei2ORCID,Guo Hao-1ORCID

Affiliation:

1. Institute of Basic Medical Sciences, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China

2. Research Studio of Integration of Traditional and Western Medicine, First Hospital, Peking University, Beijing 100034, China

3. Nutrition Department, LinYi People’s Hospital, Linyi 276000, China

Abstract

Diabetic cognitive impairment is one of the common complications of type 2 diabetes, which can cause neurological and microvascular damage in the brain. Bushen Huoxue prescription (BSHX), a compound Chinese medicine, has been used clinically to treat diabetes-induced cognitive impairment. However, its underlying mechanisms remain unclear. In this study, KK-Ay diabetic model mouse was administered BSHX daily for 12 weeks. Bodyweight, random blood glucose (RBG), and fasting blood glucose (FBG) were measured every 4 weeks. Triglycerides (TG), cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), fasting serum insulin (FINS), and Morris water maze were tested after 12 weeks of administration. On the day of sacrifice, the hippocampus was collected for pathological staining and advanced glycation end products (AGEs) analysis to evaluate the neuroprotective effect of BSHX. Our results showed that BSHX treatment significantly ameliorated the T2DM related insults, including the increased bodyweight, blood glucose, TG, insulin levels, AGEs, the reduced HDL-C, the impaired spatial memory, and the neurological impairment. Moreover, Western blot analysis showed that increased expression of receptors of AGEs (RAGEs), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and activation of nuclear factor-κB (NF-κB) in the hippocampus were significantly inhibited by BSHX treatment. These results indicate that BSHX can significantly ameliorate glucose and lipid metabolism dysfunction, reduce the morphological changes in hippocampus tissues, and improve the cognitive function of KK-Ay mice. These protective effects of BSHX may involve regulation of the AGEs/RAGE/NF-κB signaling pathway.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3