Development and Validation of a Magnetic Resonance Imaging-Based Machine Learning Model for TMJ Pathologies

Author:

Orhan Kaan123ORCID,Driesen Lukas1ORCID,Shujaat Sohaib1ORCID,Jacobs Reinhilde1ORCID,Chai Xiangfei4ORCID

Affiliation:

1. OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, University of Leuven and Oral & Maxillofacial Surgery, University Hospitals Leuven, Leuven, Belgium

2. Department of DentoMaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey

3. Ankara University Medical Design Application and Research Center (MEDITAM), Ankara, Turkey

4. Huiying Medical Technology Co., Ltd., Room C103, B2, Dongsheng Science and Technology Park, HaiDian District, Beijing City 100192, China

Abstract

The purpose of this study was to propose a machine learning model and assess its ability to classify TMJ pathologies on magnetic resonance (MR) images. This retrospective cohort study included 214 TMJs from 107 patients with TMJ signs and symptoms. A radiomics platform was used to extract (Huiying Medical Technology Co., Ltd., China) imaging features of TMJ pathologies, condylar bone changes, and disc displacements. Thereafter, different machine learning (ML) algorithms and logistic regression were implemented on radiomic features for feature selection, classification, and prediction. The following radiomic features included first-order statistics, shape, texture, gray-level cooccurrence matrix (GLCM), gray-level run length matrix (GLRLM), and gray-level size zone matrix (GLSZM). Six classifiers, including logistic regression (LR), random forest (RF), decision tree (DT), k -nearest neighbors (KNN), XGBoost, and support vector machine (SVM) were used for model building which could predict the TMJ pathologies. The performance of models was evaluated by sensitivity, specificity, and ROC curve. KNN and RF classifiers were found to be the most optimal machine learning model for the prediction of TMJ pathologies. The AUC, sensitivity, and specificity for the training set were 0.89 and 1, while those for the testing set were 0.77 and 0.74, respectively, for condylar changes and disc displacement, respectively. For TMJ condylar bone changes Large-Area High-Gray-Level Emphasis, Gray-Level Nonuniformity, Long-Run Emphasis Long-Run High-Gray-Level Emphasis, Flatness, and Volume features, while for TMJ disc displacements Average Intensity, Sum Average, Spherical Disproportion, and Entropy features, were selected. This study has proposed a machine learning model by KNN and RF analysis on TMJ MR images, which can be used to classify condylar changes and TMJ disc displacements.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3