Affiliation:
1. Department of Computer Engineering, Institute of Graduate Studies in Science and Engineering, Duzce University, Duzce, Turkey
2. Department of Computer Engineering, Faculty of Engineering, Duzce University, Duzce, Turkey
Abstract
In this article, a novel pitch determination algorithm based on harmonic differences method (HDM) is proposed. Most of the algorithms today rely on autocorrelation, cepstrum, and lastly convolutional neural networks, and they have some limitations (small datasets, wideband or narrowband, musical sounds, temporal smoothing, etc.), accuracy, and speed problems. There are very rare works exploiting the spacing between the harmonics. HDM is designed for both wideband and exclusively narrowband (telephone) speech and tries to find the most repeating difference between the harmonics of speech signal. We use three vowel databases in our experiments, namely, Hillenbrand Vowel Database, Texas Vowel Database, and Vowels from the TIMIT corpus. We compare HDM with autocorrelation, cepstrum, YIN, YAAPT, CREPE, and FCN algorithms. Results show that harmonic differences are reliable and fast choice for robust pitch detection. Also, it is superior to others in most cases.
Subject
General Engineering,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献