FPETD: Fault-Tolerant and Privacy-Preserving Electricity Theft Detection

Author:

Dong Siliang1,Zeng Zhixin1,Liu Yining1ORCID

Affiliation:

1. School of Computer and Information Security, Guilin University of Electronic Technology, China

Abstract

Electricity theft occurs from time to time in the smart grid, which can cause great losses to the power supplier, so it is necessary to prevent the occurrence of electricity theft. Using machine learning as an electricity theft detection tool can quickly lock participants suspected of electricity theft; however, directly publishing user data to the detector for machine learning-based detection may expose user privacy. In this paper, we propose a real-time fault-tolerant and privacy-preserving electricity theft detection (FPETD) scheme that combines n -source anonymity and a convolutional neural network (CNN). In our scheme, we designed a fault-tolerant raw data collection protocol to collect electricity data and cut off the correspondence between users and their data, thereby ensuring the fault tolerance and data privacy during the electricity theft detection process. Experiments have proven that our dimensionality reduction method makes our model have an accuracy rate of 92.86% for detecting electricity theft, which is much better than others.

Funder

Natural Science Foundation of Guangxi Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3