An Improved Unsupervised Single-Channel Speech Separation Algorithm for Processing Speech Sensor Signals

Author:

Jiang Dazhi1ORCID,He Zhihui1,Lin Yingqing1,Chen Yifei1,Xu Linyan2

Affiliation:

1. Department of Computer Science, Shantou University, 515063, China

2. Department of Management, Economics and Industrial Engineering, Politecnico di Milano, 20156, Italy

Abstract

As network supporting devices and sensors in the Internet of Things are leaping forward, countless real-world data will be generated for human intelligent applications. Speech sensor networks, an important part of the Internet of Things, have numerous application needs. Indeed, the sensor data can further help intelligent applications to provide higher quality services, whereas this data may involve considerable noise data. Accordingly, speech signal processing method should be urgently implemented to acquire low-noise and effective speech data. Blind source separation and enhancement technique refer to one of the representative methods. However, in the unsupervised complex environment, in the only presence of a single-channel signal, many technical challenges are imposed on achieving single-channel and multiperson mixed speech separation. For this reason, this study develops an unsupervised speech separation method CNMF+JADE, i.e., a hybrid method combined with Convolutional Non-Negative Matrix Factorization and Joint Approximative Diagonalization of Eigenmatrix. Moreover, an adaptive wavelet transform-based speech enhancement technique is proposed, capable of adaptively and effectively enhancing the separated speech signal. The proposed method is aimed at yielding a general and efficient speech processing algorithm for the data acquired by speech sensors. As revealed from the experimental results, in the TIMIT speech sources, the proposed method can effectively extract the target speaker from the mixed speech with a tiny training sample. The algorithm is highly general and robust, capable of technically supporting the processing of speech signal acquired by most speech sensors.

Funder

Li Ka Shing Foundation

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3