Prediction of Chaotic Time Series Based on BEN-AGA Model

Author:

Su LiYun1ORCID,Yang Fan1ORCID

Affiliation:

1. School of Sciences, Chongqing University of Technology, Chongqing 400054, China

Abstract

Aiming at the prediction problem of chaotic time series, this paper proposes a brain emotional network combined with an adaptive genetic algorithm (BEN-AGA) model to predict chaotic time series. First, we improve the emotional brain learning (BEL) model using the activation function to change the two linear structures the amygdala and the orbitofrontal cortex into the nonlinear structure, and then we establish the brain emotional network (BEN) model. The brain emotional network model has stronger nonlinear calculation ability and generalization ability. Next, we use the adaptive genetic algorithm to optimize the parameters of the brain emotional network model. The weights to be optimized in the model are coded as chromosomes. We design the dynamic crossover probability and mutation probability to control the crossover process and the mutation process, and the optimal parameters are selected through the fitness function to evaluate the chromosome. In this way, we increase the approximation capability of the model and increase the calculation speed of the model. Finally, we reconstruct the phase space of the observation sequence based on the short-term predictability of the chaotic time series; then we establish a brain emotional network model and optimize its parameters with an adaptive genetic algorithm and perform a single-step prediction on the optimized model to obtain the prediction error. The model proposed in this paper is applied to the prediction of Rossler chaotic time series and sunspot chaotic time series. The experimental results verify the effectiveness of the BEN-AGA model and show that this model has higher prediction accuracy and more stability than other methods.

Funder

Natural Science Foundation of Chongqing

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the prediction of chaotic time series using neural networks;Chaos Theory and Applications;2022-07-22

2. Time Series Forecasting Model for Sunspot Number;2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP);2022-07-21

3. Grey Wolf Optimization–Based Deep Echo State Network for Time Series Prediction;Frontiers in Energy Research;2022-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3