XGBoost Optimized by Adaptive Particle Swarm Optimization for Credit Scoring

Author:

Qin Chao1ORCID,Zhang Yunfeng1ORCID,Bao Fangxun2ORCID,Zhang Caiming1ORCID,Liu Peide3ORCID,Liu Peipei1

Affiliation:

1. School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250000, China

2. School of Mathematics, Shandong University, Jinan 250000, China

3. School of Management Science and Engineering, Shandong University of Finance and Economics, Jinan 250000, China

Abstract

Personal credit scoring is a challenging issue. In recent years, research has shown that machine learning has satisfactory performance in credit scoring. Because of the advantages of feature combination and feature selection, decision trees can match credit data which have high dimension and a complex correlation. Decision trees tend to overfitting yet. eXtreme Gradient Boosting is an advanced gradient enhanced tree that overcomes its shortcomings by integrating tree models. The structure of the model is determined by hyperparameters, which is aimed at the time-consuming and laborious problem of manual tuning, and the optimization method is employed for tuning. As particle swarm optimization describes the particle state and its motion law as continuous real numbers, the hyperparameter applicable to eXtreme Gradient Boosting can find its optimal value in the continuous search space. However, classical particle swarm optimization tends to fall into local optima. To solve this problem, this paper proposes an eXtreme Gradient Boosting credit scoring model that is based on adaptive particle swarm optimization. The swarm split, which is based on the clustering idea and two kinds of learning strategies, is employed to guide the particles to improve the diversity of the subswarms, in order to prevent the algorithm from falling into a local optimum. In the experiment, several traditional machine learning algorithms and popular ensemble learning classifiers, as well as four hyperparameter optimization methods (grid search, random search, tree-structured Parzen estimator, and particle swarm optimization), are considered for comparison. Experiments were performed with four credit datasets and seven KEEL benchmark datasets over five popular evaluation measures: accuracy, error rate (type I error and type II error), Brier score, and F 1 score. Results demonstrate that the proposed model outperforms other models on average. Moreover, adaptive particle swarm optimization performs better than the other hyperparameter optimization strategies.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference45 articles.

1. Pattern Recognition and Neural Networks

2. Study on credit scoring model and forecasting based on probabilistic neural network;S.-L. Pang;Xitong Gongcheng Lilun Yu Shijian/System Engineering Theory and Practice,2005

3. Statistical learning theory;V. Vapnik,1998

4. A hybrid neural network approach for credit scoring

5. A two-stage fuzzy neural approach for credit risk assessment in a Brazilian credit card company

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3