Convolutional Neural Network for Voltage Sag Source Azimuth Recognition in Electrical Internet of Things

Author:

Kai Ding1ORCID,Wei Li1,Jianfeng Sun2,Xianyong Xiao2,Ying Wang2

Affiliation:

1. Hubei Electric Power Research Institute State Grid, 430077 Wuhan, China

2. College of Electrical Engineering, Sichuan University, 610065 Chengdu, China

Abstract

Recognition and analytics at the edge enable utility companies to predict and prevent problems in real time. Clearing the voltage sag disturbance source by the positioning method is the most effective way to solve and improve the voltage sag. However, for different grid structures and fault types, the existing methods usually achieve a sag source location based on the single feature of monitoring data extraction. However, due to the effectiveness and applicability of the existing method features, this paper proposes a multidimensional feature of the voltage sag source positioning method of the matrix. Based on the analysis of the characteristics of the voltage sag event caused by the fault, this paper proposes a multidimensional feature matrix for voltage sag source location, based on the convolutional neural network to establish the mapping relationship between the feature matrix and the voltage sag position, thus achieving multiple points based on multiple points. The voltage sag source orientation is identified by the monitoring data. Finally, the voltage sag event caused by the short-circuit fault is simulated in the IEEE14 node model, and the effectiveness of the proposed method is verified by simulation data. The simulation results show that the proposed method has higher accuracy than the traditional method, and the method can be applied to different grid structures and different types of faults.

Funder

State Grid Science and Technology Project

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference36 articles.

1. Review on cause analysis and source location for voltage sag;Z. Yang,2014

2. Multiobjective optimal allocation of monitors for voltage sag location under observability constraint;Z. Yan;Transactions of China Electrotechnical Society,2019

3. A new method to classify and identify composite voltage sag sources in distribution network;L. Xialin;Power System Protection &Control,2017

4. Location of voltage sag source based on semi-supervised SVM;L. Ganyun;Power System Protection and Control,2019

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3