MCU That Is Transcriptionally Regulated by Nrf2 Augments Malignant Biological Behaviors in Oral Squamous Cell Carcinoma Cells

Author:

Wu Ran1ORCID,Zuo Weiwen2,Xu Xiaoliang3,Bi Lei1,Zhang Chunguang1,Chen Hui1,Liu Hui1ORCID

Affiliation:

1. Department of Stomatology, North China University of Science and Technology Affiliated Hospital, Tangshan, 063000 Hebei, China

2. Department of Stomatology, Tangshan Vocational and Technical College, Tangshan, 063000 Hebei, China

3. Department of Stomatology, The Second Hospital of Tangshan, Tangshan, 063000 Hebei, China

Abstract

Objective. To clarify the role and molecular mechanism of mitochondrial calcium uniporter (MCU) in the malignant biological behaviors of oral squamous cell carcinoma (OSCC) cells through clinical and cellular experiments. Methods. Immunohistochemistry and qRT-PCR techniques were used to observe the expression of MCU, nuclear factor erythroid 2-related factor 2 (Nrf2), mitochondrial calcium uptake 1 (MICU1), and MICU2 in OSCC and normal tissues. After treatment with si-MCU, spermine, and/or sh-Nrf2, malignant biological behaviors of OSCC cells including proliferation, migration, and apoptosis were detected by clone formation, migration, and mitochondrial membrane potential (MMP) assays. Furthermore, MCU, MICU1, MICU2, Nrf2, and other proteins related to malignant biological behaviors were examined using western blot, immunohistochemistry, and immunofluorescence assays. Results. MCU, Nrf2, and MICU1 were strongly expressed in OSCC as compared to normal tissues, while MICU2 was relatively weakly expressed in OSCC tissues. Knockdown of MCU distinctly weakened proliferation and migration and lowered MMP level in CAL 27 cells. Conversely, its activation reinforced migrated capacity and increased MMP level in CAL 27 cells, which was reversed after cotransfection with sh-Nrf2. After treatment with si-MCU or spermine, Nrf2 expression was not affected in CAL 27 cells. However, MCU expression was distinctly suppressed in CAL 27 cells transfected with sh-Nrf2. Furthermore, knockdown of Nrf2 significantly reversed the increase in expression of MICU1 and MICU2 induced by MCU activation in CAL 27 cells. Conclusion. MCU, as a novel oncogene of OSCC, augments malignant biological behaviors of OSCC cells, which could be transcriptionally regulated by Nrf2.

Funder

Hebei Provincial Higher Education Basic Research Funds

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3