Characteristics of the In Situ Stress Field and Engineering Effect along the Lijiang to Shangri-La Railway on the Southeastern Tibetan Plateau, China

Author:

Chai Chunyang12,Ling Sixiang13ORCID,Wu Xiyong13,Hu Ting4,Sun Dai5

Affiliation:

1. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China

2. China Railway Eryuan Engineering Group Co. Ltd (CREEC), Chengdu, Sichuan 610031, China

3. Moe Key Laboratory of High-speed Railway Engineering, Ministry of Education, Southwest Jiaotong University, Chengdu, Sichuan 610031, China

4. Sichuan Vocational School of Communication, Chengdu, Sichuan 611230, China

5. Sichuan Transportation Investment Group, Chengdu, Sichuan 610041, China

Abstract

This work aims to characterize the in situ stress field along the Lijiang to Shangri-La railway and identify possible engineering geological problems when constructing tunnels along this railway on the margin of the Tibetan Plateau. The in situ stress measured at 76 points in 12 boreholes by the hydraulic fracturing method was analysed. A rose diagram of the maximum principal stress direction was plotted based on the measured in situ stress data. The results show that the measured in situ stress is mainly horizontal stress, corresponding to a strike-slip fault-related tectonic stress field with a moderate to high in situ stress value. The main stress values have a good linear relationship with the burial depth, and the maximum horizontal principal stress (σH) increases by 1.1–8.8 MPa per 100 m, with an average gradient value of 3.6 MPa per 100 m. The maximum and minimum horizontal principal stresses and the stress differences increase with depth, and the lateral pressure coefficient (σH/ σ v ) is generally 1–1.5. The ratio of the maximum and minimum effective stresses is less than the threshold at which faulting occurs, resulting in faults that are relatively stable at present. The direction of the maximum horizontal principal stress is oriented at a small angle to the axial direction of the deeply buried tunnel along the railway line; therefore, the tunnel sidewalls could readily deform during the construction process. Rock bursts are expected to occur in strong rock masses with high risk grades, whereas slight to moderate deformation of the rock surrounding the tunnel is expected to occur in weak rock masses. This study has significance for understanding the regional fault activity and issues related to the construction of deeply buried tunnels along the Lijiang to Shangri-La railway.

Funder

China Railway Eryuan Engineering Group

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3