Analyzing Surgical Treatment of Intestinal Obstruction in Children with Artificial Intelligence

Author:

Qiu Wang-Ren1ORCID,Chen Gang1,Wu Jin2,Lei Jun3,Xu Lei4ORCID,Zhang Shou-Hua3ORCID

Affiliation:

1. Computer Department, Jing-De-Zhen Ceramic Institute, Jing-De-Zhen 333046, China

2. School of Management, Shenzhen Polytechnic, Shenzhen 518000, China

3. Department of General Surgery, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi 330006, China

4. School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen 518000, China

Abstract

Intestinal obstruction is a common surgical emergency in children. However, it is challenging to seek appropriate treatment for childhood ileus since many diagnostic measures suitable for adults are not applicable to children. The rapid development of machine learning has spurred much interest in its application to medical imaging problems but little in medical text mining. In this paper, a two-layer model based on text data such as routine blood count and urine tests is proposed to provide guidance on the diagnosis and assist in clinical decision-making. The samples of this study were 526 children with intestinal obstruction. Firstly, the samples were divided into two groups according to whether they had intestinal obstruction surgery, and then, the surgery group was divided into two groups according to whether the intestinal tube was necrotic. Specifically, we combined 63 physiological indexes of each child with their corresponding label and fed them into a deep learning neural network which contains multiple fully connected layers. Subsequently, the corresponding value was obtained by activation function. The 5-fold cross-validation was performed in the first layer and demonstrated a mean accuracy (Acc) of 80.04%, and the corresponding sensitivity (Se), specificity (Sp), and MCC were 67.48%, 87.46%, and 0.57, respectively. Additionally, the second layer can also reach an accuracy of 70.4%. This study shows that the proposed algorithm has direct meaning to processing of clinical text data of childhood ileus.

Funder

China-Montenegro Intergovernmental S&T Cooperation

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3