Affiliation:
1. School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai 200433, China
2. Jiaxing University, Jiaxing 314001, China
Abstract
Service-oriented computing has become a promising way to develop software by composing existing services on the Internet. However, with the increasing number of services on the Internet, how to match requirements and services becomes a difficult problem. Service clustering has been regarded as one of the effective ways to improve service matching. Related work shows that structure-related similarity metrics perform better than semantic-related similarity metrics in clustering services. Therefore, it is of great importance to propose much more useful structure-related similarity metrics to improve the performance of service clustering approaches. However, in the existing work, this kind of work is very rare. In this paper, we propose a SCAS (service clustering approach using structural metrics) to group services into different clusters. SCAS proposes a novel metric A2S (atomic service similarity) to characterize the atomic service similarity as a whole, which is a linear combination of C2S (composite-sharing similarity) and A3S (atomic-service-sharing similarity). Then, SCAS applies a guided community detection algorithm to group atomic services into clusters. Experimental results on a real-world data set show that our SCAS performs better than the existing approaches. Our A2S metric is promising in improving the performance of service clustering approaches.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献