Clustering Services Based on Community Detection in Service Networks

Author:

Zhou Shiyuan12,Wang Yinglin1ORCID

Affiliation:

1. School of Information Management and Engineering, Shanghai University of Finance and Economics, Shanghai 200433, China

2. Jiaxing University, Jiaxing 314001, China

Abstract

Service-oriented computing has become a promising way to develop software by composing existing services on the Internet. However, with the increasing number of services on the Internet, how to match requirements and services becomes a difficult problem. Service clustering has been regarded as one of the effective ways to improve service matching. Related work shows that structure-related similarity metrics perform better than semantic-related similarity metrics in clustering services. Therefore, it is of great importance to propose much more useful structure-related similarity metrics to improve the performance of service clustering approaches. However, in the existing work, this kind of work is very rare. In this paper, we propose a SCAS (service clustering approach using structural metrics) to group services into different clusters. SCAS proposes a novel metric A2S (atomic service similarity) to characterize the atomic service similarity as a whole, which is a linear combination of C2S (composite-sharing similarity) and A3S (atomic-service-sharing similarity). Then, SCAS applies a guided community detection algorithm to group atomic services into clusters. Experimental results on a real-world data set show that our SCAS performs better than the existing approaches. Our A2S metric is promising in improving the performance of service clustering approaches.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The New Service Realities;Journal of Business Ecosystems;2024-04-17

2. A data-driven approach for constructing multilayer network-based service ecosystem models;Software and Systems Modeling;2022-08-13

3. Structure, Dynamics, and Applications of Complex Networks in Software Engineering;Mathematical Problems in Engineering;2021-02-15

4. Hierarchical Aggregation for Reputation Feedback of Services Networks;Mathematical Problems in Engineering;2020-05-07

5. Leverage Label and Word Embedding for Semantic Sparse Web Service Discovery;Mathematical Problems in Engineering;2020-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3