ATP5D Is a Potential Biomarker for Male Fertility

Author:

Wang Yi-Bo1ORCID,Zhai Chen-Yang2,Yao Guan-Ping3,Chen Ting-Bao4,Xue Lu-Lu5,Zhou Lin6,Xiong Liu-Lin6ORCID,Wang Ting-Hua123ORCID

Affiliation:

1. School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, Liaoning Province 121001, China

2. Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan Province 650031, China

3. Reproductive Center, Affiliated Hospital of Zunyi Medical University, Zunyi, 550000 Guizhou, China

4. Animal Zoology Department, Kunming Medical University, Kunming, Yunnan Province 650031, China

5. State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041 Sichuan, China

6. Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, 550000 Guizhou, China

Abstract

Background. Infertility is a global medical and social problem that affects human health and social development. At present, about 15% of couples of the right age in the world are infertile. As all we know, genetic defects are the most likely underlying cause of the pathology. ATP5D is also known as the delta subunit of mitochondrial ATP synthase. Mitochondria maintain sperm vitality, capacitation, acrosome reaction, and DNA integrity through ATP. Mitochondrial damage can trigger energy synthesis disorders, resulting in decreased sperm quality and function or even disappearance. The specific role of ATP5D in regulation of the male reproductive system remains elusive. Methods. In this study, semen from normal and infertile males were collected and their indicators were examined by analysis of routine sperm parameters; ATP5D protein content in semen was examined by ELISA. Singer sequencing was used to detect whether there was a mutated of ATP5D in semen. Meanwhile, ATP5D knockout (KO) and knockin (KI) male mice were selected at 8-12 weeks of age and mated with adult wild-type (WT) female mice for more than two months to assess their fertility and reproductive ability. Morphological changes in tissues such as testes and epididymis were observed by HE staining; spermatozoa were taken from the epididymis of the mice; sperm counts were performed and morphological changes were observed by Diff-Quik staining. Results. The results showed that the expression of ATP5D in infertile males was significantly lower than that in normal males ( P < 0.001 ) and the normal morphology rate of spermatozoa was much lower than that of normal males, and the sequencing results showed no mutations. The animal reproductive experiments showed no significant changes in the number of fertility in KO/KI mice compared with WT mice, but the duration of fertility was significantly longer ( P = 0.02 ). The testicular cells in KO mice were loosely arranged and disorganized, the lumen was larger, the interstitial cells were atrophied, and the number of spermatozoa was reduced and the malformation rate was higher in WT males. This suggests that ATP5D is an essential protein for sperm formation and fertility in male mice and may be used as a biomarker of male fertility. Conclusion. This study found ATP5D correlated with male infertility and the expression levels were significantly reduced in the seminal plasma of all male infertile patients without gene mutations. KO male significantly prolonged fertility time and impaired testicular histomorphology. This suggests that ATP5D may be associated with spermatogenic function and fertility in male mice and may be used as a biomarker for male fertility. Future studies are required to elucidate the potential mechanisms. The trial registration number is KLL-2021-266.

Funder

Science and Technology Elite of Zunyi Medical University

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3