The Relationship between Benthic Macroinvertebrate Assemblages and Water Quality Parameters in the Sanyati Basin, Lake Kariba, Zimbabwe

Author:

Makumbe Peter12ORCID,Kanda Artwell2,Chinjani Tambudzai2

Affiliation:

1. Shangani Ranch, P.O. Box 24, Shangani, Zimbabwe

2. Department of Environmental Science, Bindura University of Science Education, P. Bag 1020, Bindura, Zimbabwe

Abstract

Biological monitoring of reservoirs is important in assessing aquatic health. This study aimed at assessing the structure of benthic macroinvertebrate communities in relation to physicochemical parameters along Sanyati basin shoreline in Lake Kariba, Zimbabwe. Six sites (S1 to S6) characterized by various human disturbances were sampled for physicochemical parameters and benthic macroinvertebrates from January to March 2018. We computed macroinvertebrate metrics and classified them into functional feeding groups (FFGs). A canonical correspondence analysis (CCA) triplot was constructed to assess species-physicochemical relations. Significant differences across the sampling sites were observed for pH, electrical conductivity, turbidity, nitrate-nitrogen (NO3-N), ammonium nitrogen (NH4-N), total nitrogen (TN), phosphate-phosphorus (PO4-P), total phosphates (TP), and dissolved oxygen (DO). The results from CCA highlighted that S1 was generally associated with high pH, NH4-N, and TN, and Oligochaeta, Syrphidae, and Hydrophilidae families. The highest percentage of EPT taxa (39.83%) was recorded at S6, while the lowest was recorded at S1. The taxa were made up of 50% predators, 26% collector-gatherers, 6% scrappers, 6% shredders, and 3% collector-filters with 3 taxa (Chironomidae, Hydropsychidae, and Leptoceridae) having more than two FFGs. Site S1 had a significantly higher mean abundance of collector-gatherers than the other sites. A high correlation between water parameters and SASS and ASPT scores was observed indicating their ability to detect environmental changes. These findings suggest that macroinvertebrate communities are good candidates for delineating the effects of industrial pollution on water quality.

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3