Big Data Analytics Model for Distributed Document Using Hybrid Optimization with K -Means Clustering

Author:

Sharma Kapil1ORCID,Saini Satish2ORCID,Sharma Shailja3,Kang Hardeep Singh3ORCID,Bouye Mohamed4,Krah Daniel5ORCID

Affiliation:

1. Computer Science and Engineering, Ph.D. Research Scholar, RIMT University, Mandi Gobindgarh, Punjab, India

2. Electronics and Communication Engineering, Professor, RIMT University, Mandi Gobindgarh, Punjab, India

3. Computer Science and Engineering, Assistant Professor, Guru Nanak Dev Engineering College, Ludhiana, Punjab, India

4. Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia

5. Tamale Technical University, Ghana

Abstract

Clustering, also known as unsupervised learning, is one of the most significant topics of machine learning because it divides data into groups based on similarity with the aim of extracting or summarizing new information. It is one of the most often used machine learning techniques. The most significant problem encountered in this subject is the sheer volume of electronic text documents accessible, which is increasing at an exponential rate, necessitating the development of efficient ways for dealing with these papers. Furthermore, it is not practicable to consolidate all of the papers from numerous locations into a single area for processing. In this study, the primary goal is to enhance the performance of the distributed document clustering approach for clustering big, high-dimensional distributed document datasets. For distributed storage and analysis, one of the most prominent open-source implementations of the big data analytic-based MapReduce model, such as the Hadoop framework, is used in conjunction with a distributed file system and is known as the Hadoop Distributed File System, to achieve the desired results. This necessitates an improvement in the approach of the clustering operation with Elephant Herding Optimization, which will be accomplished by applying a hybridized clustering procedure. In conjunction with the MapReduce framework, this hybridized strategy is able to solve the obstacles associated with the K -means clustering method, including the initial centroids difficulty and the dimensionality problem. In this paper, we analyze the performance of the whole distributed document clustering technique for big document datasets by using a distributed document clustering framework such as Hadoop and the associated MapReduce methodology. In the end, this decides how quickly computations may be completed.

Funder

King Khalid University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3