A Low-Cost BIST Scheme for Test Vector Embedding in Accumulator-Generated Sequences

Author:

Voyiatzis Ioannis1

Affiliation:

1. Department of Informatics, Technological Educational Institute of Athens, Athens 12210, Greece

Abstract

Test set embedding built-in self test (BIST) schemes are a class of pseudorandom BIST techniques where the test set is embedded into the sequence generated by the BIST pattern generator, and they displace common pseudorandom schemes in cases where reverse-order simulation cannot be applied. Single-seed embedding schemes embed the test set into a single sequence and demand extremely small hardware overhead since no additional control or memory to reconfigure the test pattern generator is required. The challenge in this class of schemes is to choose the best pattern generator among various candidate configurations. This, in turn, calls for a need to evaluate the location of each test pattern in the sequence as fast as possible, in order to try as many candidate configurations as possible for the test pattern generator. This problem is known as the test vector-embedding problem. In this paper we present a novel solution to the test vector-embedding problem for sequences generated by accumulators. The time overhead of the solution is of the order O(1). The applicability of the presented method for embedding test sets for the testing of real-world circuits is investigated through experimental results in some well-known benchmarks; comparisons with previously proposed schemes indicate that comparable test lengths are achieved, while the time required for the calculations is accelerated by more than 30 times.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Accumulator—Based Test-Per-Clock Scheme;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2011-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3