Vulnerability Assessment and Application of Bacterial Technology on Urban Rivers for Pollution Eradication

Author:

Hashim Sarfraz1,Yuebo Xie1,Ahmad Fiaz23ORCID,Arslan Chaudhry24,Saifullah Muhammad1

Affiliation:

1. Department of Hydrology and Water Resources, Hohai University, Nanjing, Jiangsu 210098, China

2. College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu 210031, China

3. Department of Agricultural Engineering, Bahauddin Zakariya University, Multan 60800, Pakistan

4. Department of Structures and Environmental Engineering, University of Agriculture, Faisalabad 38040, Pakistan

Abstract

To protect against the environmental pollution, the present research was undertaken to enumerate the Bacterial Technologies (BTs) on the restoration of polluted urban rivers, that is, Fenghu-Song Yang River (FSR) and Xuxi River (XXR). Experimental research accounted for the physiochemical parameters (pH; temperature; dissolved oxygen (DO); chemical oxygen demand (COD); total phosphorus (TP); total nitrogen (TN); and ammonia nitrogen (NH3N)) before and after the BT operation. The results declared that the BT is efficient to restore the polluted rivers up to reliable condition. These results were analyzed by using multivariate statistical techniques (principal component analysis (PCA) and cluster analysis (CA)). These techniques interpreted the complex data sets and expressed the point source information about the water quality of these rivers at SA5, SA6, and SB3 under highly polluted regions. For better understanding, water quality index (WQI) was applied to compute the single numeric value. WQI results are evidence of the above results which prove the water quality of both rivers faced under outrageous condition (below 50 WQI scores) before the BT treatment, but, after the treatment, the rivers were restored from fair to good level (above 50 WQI scores) and overall output of these scores was quite similar to detect the point source of pollution. These results described an abrupt recovery of the urban rivers up to reliable condition for aquatic organism and clear effluents from the rivers.

Funder

Higher Education Commission, Pakistan

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3