A Study of a Flow Model in Dual Permeability Reservoir Based on Similar Structure Theory

Author:

Zhou Tianhong1ORCID,Shen Jie1ORCID,Wang Man1,Wu Yun2

Affiliation:

1. School of Information Engineering, Wuhan Business University, Wuhan 430056, China

2. School of Information Technology Application Innovation, Wuhan Polytechnic, Wuhan 436000, China

Abstract

The aim of the study is to further understand the rule of conversion of bottom hole pressure of a vertical well in a dual-permeability reservoir, which is about the dual permeability under different outer boundary (infinite, close, and constant value) conditions. However, there are few articles dealing with the model of a vertical well in a dual permeability reservoir under these three different outer boundary conditions. Hence, the paper proposes a model of a vertical well in a dual permeability reservoir under three outer boundary conditions. The model is solved with a Laplace space equation. We find the solution to the model that has a similar structure under three different outer boundary conditions by combining it with the similar structure theory. Therefore, we put forward a similar constructing method (SCM) that solves our model. The concrete steps of the SCM are given in this paper. At the same time, we draw the curves of the bottom hole pressure and pressure derivative using the modified Stehfest inversion formula and MATLAB software. In addition, we investigate the evolution of the pressure by changing the parameters (mobility ratio K, storability ratio ω , and crossflow coefficient λ ). The solution to such a reservoir model obtained in this paper could be used as a basis for analyzing other typical reservoirs with vertical wells.

Funder

Chinese University New Generation Information Technology Project

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3