Modeling and Dynamic Performance Analysis of Hydraulic Top Drive Main Transmission System with Long Hydraulic Pipelines

Author:

Shi Yuanling1ORCID,Zhang Pingsong1

Affiliation:

1. School of Earth & Environment, Anhui University of Science & Technology, Huainan 232001, China

Abstract

Hydraulic top drive is the main power component used to drive drilling tools rotating to drill a hole for drilling rigs. Its main transmission system was built with hydraulic power source and hydraulic actuators. During the drilling procession, the hydraulic top drive is mounted on a derrick, and moving along its vertical guide rails. The hydraulic power station is usually placed on the drilling platform or the ground. In that way, long pipelines are needed to connect the hydraulic pumps and hydraulic motors. Thus, the effects on the performance of hydraulic top drive should not be neglected. A mathematical model of hydraulic top drive main transmission with differential equation of hydraulic units and state space equation of hydraulic long pipelines was deduced in this research. A simulation model was built using the AMESim software. And field drilling test of the hydraulic top drive was carried out in Songliao Basin Drilling Project (SK-II) well site. To verify and modify the virtual model, a comparison analysis was performed by setting the parameters and load of the three methods at the same values. The result of comparison shows that the simulation results are very close to the theoretical results and field drilling test data. Thus, the dynamic characteristics could be analyzed by this simulation model. Dynamic characteristics of the hydraulic top drive with different length and various diameters of pipelines were studied. The simulation results demonstrate that pipeline lengths and pipeline diameters affect the system in different laws, and it needs to comprehensively consider the system response speed, overshoot, and steady-state characteristics when choosing the size of pipelines for hydraulic top drive.

Funder

Scientific Research Foundation of AUST

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3