Evaluation of Coal Pore Connectivity Using N2 Sorption Isotherm and Spontaneous Imbibition Tests

Author:

Xia Tong-qiang123ORCID,He Jiao-fei3,Fan Shi-xing2,Zhang Qiang-qiang3,Li Zi-long23ORCID,Sun Dun-shuai3

Affiliation:

1. Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an University of Science and Technology, Xi'an 710054, China

2. State Key Laboratory of Coal Resources in Western China, Xi'an University of Science and Technology, Xi'an 710054, China

3. School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221008, China

Abstract

Pore structure and connectivity of coal are critical factors in coal gas migration and production, which can be characterized by studying the kinetics of capillary imbibition behaviour within the pore spaces. In order to investigate them, six typical coal samples from different collieries in China (Yangcun, Changcun, Gengcun, Yanbei, Dongxia, and Yuwu coal) are selected to carry out N2 sorption isotherm and spontaneous imbibition tests. Results from N2 sorption isotherm tests show that there is a great difference between the total specific surface area and total pore volume among the six coal samples. Their total specific surface area varies from 0.302 to 3.275 m2/g, and the total pore volume varies from 1.782 to 10.94 mm3/g. The pore volume relationship of coal sample among them is in order from the large to small: Dongxia>Yangcun>Gengcun>Yuwu>Changcun>Yanbei coal, and the specific surface area is in order from the large to small: Yangcun>Dongxia>Changcun>Yuwu>Gengcun>Yanbei coal. The imbibition characters of six coal samples were matched using explicit the short-time limit t 0 and long-time limit t models by Zhmud et al., respectively. The results show that the long-time limit t model is better. Combined with pore structure analysis, it can be qualitatively analyzed that the imbibition capacity of six coal samples is positively correlated with the connectivity of coal pores, which is ranked as Changcun>Yanbei>Gengcun>Yangcun>Dongxia>Yuwu coal. This work will help understand the mechanism controlling fluid loss and ultimate gas/oil recovery in unconventional hydrocarbon exploration.

Funder

State Key Laboratory of Coal Resources in Western China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3