Affiliation:
1. National Engineering Research Center of Communications & Networking, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract
In this paper, we introduce a full-duplex backscatter-assisted wireless powered communication network (FDBA-WPCN) with a full-duplex access point (FAP) and multiple energy harvesting wireless devices (WDs). The communication mode is a combination of backscatter communication (BC) and harvest-then-transmit (HTT). The entire time period of network is divided into energy harvesting/backscattering (EHB) period and information transmission (IT) period. In the EHB period, each WD either reflects information to the FAP by backscatter or harvests energy to prepare for the IT period. In the IT period, the WDs use their harvested energy to transmit information to FAP in time division multiple access (TDMA). However, under the setting, WDs with different distances from FAP will encounter unfairness in throughput due to the round-trip path loss in backscatter and the doubly near-far problem in HTT. To overcome the drawback, an optimization problem is considered to maximize the sum throughput under the condition of ensuring throughput fairness. By using convex optimization techniques, we obtain the optimal time allocation and the maximum same throughput of each WD. Comparing to the other two benchmark schemes, the simulation results prove the superiority of our proposed method.
Funder
Natural Science Foundation of Jiangsu Province
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献