The Impact of Inulin and a Novel Synbiotic (Yeast Saccharomyces cerevisiae Strain 1026 and Inulin) on the Development and Functional State of the Gastrointestinal Canal of Calves

Author:

Jonova S.1ORCID,Ilgaza A.1,Zolovs M.2ORCID

Affiliation:

1. Latvia University of Life Sciences and Technologies, Faculty of Veterinary Medicine, Preclinical Institute, Helmana Iela 8, Jelgava, LV-3004, Latvia

2. Daugavpils University, Institute of Life Sciences and Technology, Department of Biosystematics, Parades Iela 1a, Daugavpils, LV-5401, Latvia

Abstract

Successful management of the dairy industry is closely related to rearing healthy calves. The proper development of the gastrointestinal canal is crucial to reach this goal. One of the strategies to promote this development is the addition of feed additives to the diet. This research aimed to determine the impact of prebiotic inulin and a new, not commercially available synbiotic (mix of prebiotic inulin and probiotic S. cerevisiae strain 1026) on the development of the gastrointestinal canal of calves by comparing the weight of the stomach, its relative ratio to body weight and evaluating pH, and histological changes in different parts of the gastrointestinal canal and assess whether or not the addition of inulin to the yeast S. cerevisiae improves the abovementioned parameters. We used prebiotic inulin (6 g) and a synbiotic (prebiotic inulin 6 g and probiotic Saccharomyces cerevisiae strain 1026, 5 g). The 56-day long research was conducted with fifteen crossbreed calves (32 ± 6 days old) organized in the control group (CoG), the prebiotic group (PreG), and the synbiotic group (SynG). We determined pH, morphological parameters of different parts of the digestive canal, and morphometric parameters of the stomach. The addition of prebiotic inulin to calves’ diet causes the increase of pH in rumen, abomasum, and intestines but when inulin was added to S. cerevisiae, pH decreased and was even lower than in the control group. Prebiotic inulin and its synbiotic with yeast S. cerevisiae positively impact the development of almost all morphological structures of rumen saccus dorsalis, rumen saccus ventralis, and intestine; moreover, calves from the synbiotic group showed better results in virtually all parameters. However, both inulin and synbiotic did not affect the weight and relative weight of different parts of the stomach. Tested synbiotic has the potential to promote the development of the rumen and other parts of the digestive canal of calves.

Funder

National Research Program

Publisher

Hindawi Limited

Subject

General Veterinary

Reference49 articles.

1. A review of the importance and physiological role of curd formation in the abomasum of young calves;J. I. Longenbach;Animal Feed Science and Technology,1998

2. Feeding management for early rumen development in calves;K. Govil;Journal of Entomology and Zoology Studies,2017

3. Rumen Development, Intestinal Growth and Hepatic Metabolism In The Pre- and Postweaning Ruminant

4. Development and Analysis of a Rumen Tissue Sampling Procedure

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3