Calibration for Parameter Estimation of Signals with Complex Noise via Nonstationarity Measure

Author:

Zhou Zhiming1,Zhou Zhengyun2,Wu Liang3ORCID

Affiliation:

1. The Faculty of Information Technology, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, China

2. Center for Mathematical Sciences and Department of Mathematics, Wuhan University of Technology, Wuhan 430070, China

3. Center of Statistical Research, School of Statistics, Southwestern University of Finance and Economics, Chengdu 611130, China

Abstract

The signals in numerous complex systems of engineering can be regarded as nonlinear parameter trend with noise which is identically distributed random signals or deterministic stationary chaotic signals. The commonly used methods for parameter estimation of nonlinear trend in signals are mainly based on least squares. It can cause inaccurate estimation results when the noise is complex (such as non-Gaussian noise, strong noise, and chaotic noise). This paper proposes a calibration method for this issue in the case of single parameter via nonstationarity measure from the perspective of the stationarity of residual sequence. Some numerical studies are conducted for validation. Results of numerical studies show that the proposed calibration method performs well for various models with different noise strengths and types (including random noise and chaotic noise) and can significantly improve the accuracy of initial estimates obtained by least squares method. This is the first time that the nonstationarity measure is applied to the parameter calibration. All these results will be a guide for future studies of other parameter calibrations.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3