Effects of Running Surface Stiffness on Three-Segment Foot Kinematics Responses with Different Shod Conditions

Author:

Abdul Yamin Noor Arifah Azwani1,Basaruddin Khairul Salleh12ORCID,Salleh Ahmad Faizal12ORCID,Salim Mohammad Shahril12,Wan Muhamad Wan Zuki Azman23ORCID

Affiliation:

1. School of Mechatronic Engineering, Universiti Malaysia Perlis, 02600 Pauh Putra, Perlis, Malaysia

2. Medical Device and Life Sciences Cluster, Sports Engineering Research Center (SERC), Universiti Malaysia Perlis, 02600 Pauh Putra, Perlis, Malaysia

3. Institute of Engineering Mathematics, Universiti Malaysia Perlis, 02600 Pauh Putra, Perlis, Malaysia

Abstract

Objective. The aim of this study was to investigate the effects of surface stiffness on multisegment foot kinematics and temporal parameters during running. Methods. Eighteen male subjects ran on three different surfaces (i.e., concrete, artificial grass, and rubber) in both heeled running shoes (HS) and minimal running shoes (MS). Both these shoes had dissimilar sole profiles. The heeled shoes had a higher sole at the heel, a thick base, and arch support, whereas the minimal shoes had a flat base sole. Indeed, the studied biomechanical parameters responded differently in the different footwear during running. Subjects ran in recreational mode speed while 3D foot kinematics (i.e., joint rotation and peak medial longitudinal arch (MLA) angle) were determined using a motion capture system (Qualysis, Gothenburg, Sweden). Information on stance time and plantar fascia strain (PFS) was also collected. Results. Running on different surface stiffness was found to significantly affect the peak MLA angles and stance times for both HS and MS conditions. However, the results showed that the joint rotation angles were not sensitive to surface stiffness. Also, PFS showed no relationship with surface stiffness, as the results were varied as the surface stiffness was changed. Conclusion. The surface stiffness significantly contributed towards the effects of peak MLA angle and stance time. These findings may enhance the understanding of biomechanical responses on various running surfaces stiffness in different shoe conditions.

Funder

Ministry of Higher Education, Malaysia

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3