Reliability Analysis of Gasifier Lock Bucket Valve System Based on DBN Method

Author:

Liu Ming1ORCID,Ma Jiayue2ORCID,Duo Yili1ORCID,Sun Tie2ORCID

Affiliation:

1. School of Environment and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China

2. School of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China

Abstract

In order to solve the problem of zero-failure data and dynamic failure in gasification system, a dynamic Bayesian network (DBN) combined with Monte Carlo simulations is proposed to analyze the reliability of the gasifier lock bucket valve system. On the basis of studying the structure of the gasifier lock bucket valve system, the reliability model of the system is built based on DBN, and the structure learning is realized. The Monte Carlo simulation is used for the timed ending test in Bayesian estimation, which effectively solves the problem of zero-failure data and realizes the parameter learning. Through the Metropolis-Hastings (M-Hs) algorithm, the prior distribution of dynamic node is randomly sampled to obtain the target distribution, which makes the reliability predictive inference for DBN of the gasifier lock bucket valve system faster and more accurate. The obtained reliability prediction is a curve varying with time. The results show that the valve frequent switch node of DBN of the gasifier lock bucket valve system is identified as the weak link by the powerful reverse inference for DBN, which needs to be paid more attention to. This method can effectively improve the maintenance level of the gasifier lock bucket valve system and can effectively reduce the possibility of accidents.

Funder

National Project Funding for Key R & D Programs

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3