Affiliation:
1. College of Electronic & Control Engineering Chang’an University, Xi’an, China
Abstract
A class of nonlinear networked systems with external interference is designed in this paper. Currently, we have witnessed that networked control technology has played a key role in the Internet of Things (IoT). However, the amount of big data in the Internet of Things will cause network congestion in the data transmission of the network control system. In order to solve this problem, event-driven control scheme can effectively save the network resources of the network control system. But when there is interference in the system, the conventional constant threshold parameter is difficult to achieve the expected energy-saving effect. In order to solve this challenge, this paper proposes a design with a continuously variable threshold. After each trigger to transmit data, the threshold gets changed accordingly, and the sliding mode approach rate is changed simultaneously. Compared with the constant threshold event drive, the number of transmissions in this design can be greatly reduced, while sliding mode jitter is suppressed. The simulation results show that the scheme can achieve higher resource utilization efficiency and better robustness.
Funder
Key Project of National Internet of Things Integrated Innovation and Integration
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems