Numerical Analysis for Dynamic Instability of Electrodynamic Maglev Systems

Author:

Cai Y.1,Chen S.S.1

Affiliation:

1. Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA

Abstract

Suspension instabilities in an electrodynamic maglev system with three- and five-degrees-of-freedom DOF vehicles traveling on a double L-shaped set of guideway conductors were investigated with various experimentally measured magnetic force data incorporated into theoretical models. Divergence and flutter were obtained from both analytical and numerical solutions for coupled vibration of the three-DOF maglev vehicle model. Instabilities of five direction motion (heave, slip, roll, pitch, and yaw) were observed for the five-DOF vehicle model. The results demonstrate that system parameters such as system damping, vehicle geometry, and coupling effects among five different motions play very important roles in the occurrence of dynamic instabilities of maglev vehicles.

Funder

US Army Corps of Engineers and the Federal Railroad Administration

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Behavior of High-Speed Maglev Guideway Girders with Quadratically-Varied Cross-Section;2024

2. Vibration analysis of a hyperloop pod with a novel hybrid levitation in accelerating and braking maneuvers;Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit;2023-06-07

3. A small-distributed aerodynamic brake prototype and its effects on the vertical dynamics of high-speed electromagnetic suspension maglevs;Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit;2022-03-08

4. Model-Guided Data-Driven Decentralized Control for Magnetic Levitation Systems;IEEE Access;2018

5. Bibliography;Fluid-Structure Interactions;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3