A Data-Driven Adaptive Emotion Recognition Model for College Students Using an Improved Multifeature Deep Neural Network Technology

Author:

Liu Li12ORCID,Ji Yunfeng1,Gao Yun1,Li Tao1,Xu Wei1

Affiliation:

1. Jiangsu Vocational College of Information Technology, Wuxi, Jiangsu 214153, China

2. Jiangsu Key Laboratory of Media Design and Software Technology (Jiangnan University), Wuxi 214122, China

Abstract

With the increasing pressure on college students in terms of study, work, emotion, and life, the emotional changes of college students are becoming more and more obvious. For college student management workers, if they can accurately grasp the emotional state of each college student in all aspects of the whole process, it will be of great help to student management work. The traditional way to understand students’ emotions at a certain stage is mostly through chats, questionnaires, and other methods. However, data collection in this way is time-consuming and labor-intensive, and the authenticity of the collected data cannot be guaranteed because students will lie out of impatience or unwillingness to reveal their true emotions. In order to explore an accurate and efficient emotion recognition method for college students, more objective physiological data are used for emotion recognition research. Since emotion is generated by the central nervous system of the human brain, EEG signals directly reflect the electrophysiological activity of the brain. Therefore, in the field of emotion recognition based on physiological signals, EEG signals are favored due to their ability to intuitively respond to emotions. Therefore, a deep neural network (DNN) is used to classify the collected emotional EEG data and obtain the emotional state of college students according to the classification results. Considering that different features can represent different information of the original data, in order to express the original EEG data information as comprehensively as possible, various features of the EEG are first extracted. Second, feature fusion is performed on multiple features using the autosklearn model integration technique. Third, the fused features are input to the DNN, resulting in the final classification result. The experimental results show that the method has certain advantages in public datasets, and the accuracy of emotion recognition exceeds 88%. This proves the used emotion recognition is feasible to be applied in real life.

Funder

Jiangnan University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3