Effects of Coarse and Fine Crushed Clay Brick Content on the Compressive Strength of Recycled Aggregate Concrete and the Microscopic Mechanism

Author:

Chang Jin1ORCID,Luo Shi-lin12ORCID,Ailifeila Aierken1ORCID,Chong Lin-lin1ORCID,Jiang Jian-qing1ORCID

Affiliation:

1. College of Civil Engineering, Changsha University, Changsha 410022, China

2. Guizhou Provincial Key Laboratory of Rock and Soil Mechanics and Engineering Safety, Guizhou University, Guiyang, Guizhou 550025, China

Abstract

The objective of this study is to investigate the compressive strength and microstructural evolution of recycled aggregate concrete (RAC) containing coarse and fine clay brick aggregates. The compressive strength tests, scanning electron microscopy (SEM) observations, and X-ray diffraction (XRD) tests were performed on RAC and natural aggregate concrete (NAC) containing different coarse and fine crushed clay brick contents. The results showed that the compressive strength of NAC and RAC decreased with the increase of crushed clay brick content, and the growth rate of their compressive strength slowed down with the increase of age. At the same age and replacement rate, fine crushed clay bricks had less effect on the compressive strength of RAC than coarsely crushed clay bricks. The compressive strength of RAC aged 60 days, mixed with 60% fine brick slag and mixed with 60% coarse brick slag, is 10.49% and 14.75% lower than that of RAC aged 60 days and mixed with 0% fine brick slag, respectively. Compared with RAC, the compressive strength of NAC was more significantly affected by grading. The interfacial transition zones inside RAC had loose crystals and high porosity, with a weak adhesion between the crushed clay bricks and mortar interfaces. The crushed clay bricks did not affect the types of concrete hydration products, and Calcium-Silicate-Hydrate (C-S-H) and Ca(OH)2 crystals remained the early hydration products in RAC with crushed clay bricks. Nevertheless, the crushed clay bricks inhibited the hydration reaction of the concrete, resulting in decreasing hydration products in NAC, RAC, and RAC with crushed clay bricks.

Funder

Changsha Municipal Natural Science Foundation

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3