Experimental Study on Permeability Coefficient in Layered Fine Tailings under Seepage Condition

Author:

Dong Tao1,Cao Ping1,Gui Rong2,Lin Qibin1ORCID,Liu Zhizhen1

Affiliation:

1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China

2. School of Resource Environment and Safety Engineering, University of South China, Hengyang, Hunan 421001, China

Abstract

Nearly half of the tailings dams in China are in a state of high-security risks and overservice, and the safety of these tailings dams has always been a concern for relevant scholars. The seepage characteristics of tailings are one of the essential factors affecting the safety of tailings dam. Now, due to the improvement of mineral processing technology, there are many fine tailings dam; the study of the seepage characteristics of the tailings dam is no longer applicable. Fine-grained tailings form uneven deposition in these tailings dams, resulting in the permeability of tailings not conforming to the previous law. Therefore, it is of great significance to study the permeability of fine-grained tailings with uneven deposition. In this paper, the physical model of the simulated tailings dam is established to study the influence of the dry beach slope on the distribution and deposition law of fine tailings during discharge. The test results show that the average particle size of tailings decreases along the length of dry beach, showing the phenomenon of coarsening upstream and thinning downstream. Then, based on the data of fine tailings deposition, the variation characteristics of the permeability coefficient of layered tailings under stable and unstable seepage conditions are studied. The test results show that the variation process of tailings permeability coefficient can be divided into four stages: rapid compaction stage, slow compaction stage, failure stage, and stable stage. Under stable and unstable seepage conditions, the permeability coefficients of unstratified tailing sand are about 10% and 15% higher, respectively, than those in the initial state. The permeability coefficient of layered tailings formed by uneven settlement changes more obviously, which is about 12% and 20% higher than the initial state.

Funder

Water Conservancy Science and Technology Major Project of Hunan Province, China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3