A Compact, Bistatic Antenna System with Very High Interport Isolation for 2.4 GHz In-Band Full Duplex Applications

Author:

Nawaz Haq1ORCID,Shoaib Nosherwan2ORCID,Niazi Ahmad Umar1ORCID,Chaudhry Shabbir Majeed3ORCID

Affiliation:

1. Electronics Engineering, University of Engineering and Technology (UET) Taxila, Sub-Campus Chakwal, Chakwal 48800, Pakistan

2. Research Institute for Microwave and Millimeter-Wave Studies (RIMMS), National University of Sciences and Technology (NUST), Islamabad, Pakistan

3. Electrical Engineering, University of Engineering and Technology (UET), Taxila 47050, Pakistan

Abstract

This paper presents a compact, dual polarized bistatic (two closely spaced transmit and receive radiators) patch antenna with excellent interport isolation performance. The presented antenna system employs differential receive mode operation for the cancellation of self-interference (SI) to achieve very high interport isolation for 2.4 GHz in-band full duplex (IBFD) applications. The presented antenna is based on two closely spaced radiators and a simple 3 dB/180° coupler for differentially excited receive mode operation. The 3 dB/180° coupler performs as a passive self-interference cancellation (SIC) circuit for the presented antenna. The small form-factor structure is realized through via interconnections between the receiving patch and SIC circuit. The prototype of the presented antenna characterizes better than 105 dB peak interport isolation. Moreover, the recorded interport isolation is more than 90 dB and 95 dB within 60 MHz and 40 MHz bandwidths, respectively. The measured gain and cross-polarization levels reflect superior radiation performance for the validation model of the proposed antenna. The presented antenna offers DC interport isolation too, which is required for active antenna applications. The novelty of this work is a compact (small form-factor) antenna structure with very high peak interport isolation along with wider SIC bandwidth as compared to previously reported antennas for full duplex applications.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-Interference Cancellation: A Comprehensive Review from Circuits and Fields Perspectives;Electronics;2022-01-06

2. A Parasitic Patch Antenna System with High Isolation for Full Duplex Application;2021 IEEE Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS);2021-05-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3