Application of Improved Combined Deterministic-Stochastic Subspace Algorithm in Bridge Modal Parameter Identification

Author:

Wen Peng1,Khan Inamullah2ORCID,He Jie3,Chen Qiaofeng1

Affiliation:

1. Bridge Engineering Department, Southwest Jiaotong University, Chengdu, China

2. School of Civil Engineering, National University of Sciences and Technology, Islamabad, Pakistan

3. China Railway Eryuan Engineering Group. Co. Ltd, Chengdu, China

Abstract

Modal parameter identification is considered to be one of the most important tasks in structural health monitoring because it provides a reliable reference for structural vibration control, damage severity, and operational state. Moreover, at present, the combined deterministic-stochastic subspace algorithm is cogitated as one of the key algorithms in the modal parameter identification, which is why it is widely used in the modal parameter identification of bridge structures. In this paper, a novel method is proposed, which is a time-domain identification algorithm, based on sliding window-fuzzy C-means clustering algorithm-combined with deterministic-stochastic subspace identification (SC-CDSI), to achieve online intelligent tracking and identification of modal parameters for nonlinear time-varying structures. First of all, to realize the online tracking and identification process, it is necessary to divide the input and output signal of the nonlinear time-varying structure by windowing; for that, to determine the window function, window size and window step length according to the characteristics of the signal are analyzed. Secondly, in order to satisfy the intelligent identification of effective modals in stability diagram, the fuzzy C-means clustering algorithm is kept as a base, whereas frequency, damping ratio, and modal shapes serve as clustering elements, applied to fuzzy C-means clustering algorithm, and then the intelligent selection of effective modals is achieved. Finally, a shaking table test bridge is used as a modal parameter identification in lab, and its results are compared with the MIDAS finite element results. The compared results show that the proposed SC-CDSI identification algorithm can accurately achieve the intelligent identification of online tracking of the structural frequency, and the identification results are reliable to be used in real-life bridge structures.

Funder

National Basic Research Program of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference22 articles.

1. Generalized Type-2 Fuzzy Systems for controlling a mobile robot and a performance comparison with Interval Type-2 and Type-1 Fuzzy Systems

2. Analyzing microarray data of alzheimer’s using cluster Analysis to identify the biomarker genes, satya vani guttula, apparao allam;S. v. Guttula;R. Sridhar Gumpeny International Journal of Alzheimer’s Disease,2012

3. Modal Parameter Identification Of Cable Stayed Bridge Based On Exploratory Data Analysis

4. Deterministic-stochastic subspace identification for bridges;H. Thai

5. Damage assessment through structural identification of a three-story large-scale precast concrete structure

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3