Potential Prognostic Biomarkers of Lung Adenocarcinoma Based on Bioinformatic Analysis

Author:

Hou Jili1ORCID,Yao Cheng2ORCID

Affiliation:

1. Department of Medical Oncology, Zhuji People’s Hospital of Zhejiang Province, The Zhuji Affiliated Hospital of Shaoxing University, No. 9 Jianmin Road, Tao Zhu Street, Zhuji, Zhejiang 311800, China

2. Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, 318 Chaowang Road, Hangzhou, Zhejiang 310005, China

Abstract

Lung adenocarcinoma (LUAD), which accounts for 60% of non-small-cell lung cancers, is poorly diagnosed and has a low average 5-year survival rate (approximately 20%). It remains the leading cause of cancer-related deaths worldwide. Studies on long noncoding RNAs (lncRNAs) in LUAD-related competing endogenous RNA (ceRNA) networks are limited. We aimed to identify novel prognostic biomarkers for LUAD using bioinformatic tools and data analysis. We systemically integrated differentially expressed genes and clinically significant modules using weighted correlation network analysis. We performed a functional analysis of the collected candidate genes and explored three LUAD-related genes (VWF, PECAM1, and COL1A1) associated with the overall survival rates of patients with LUAD. Based on Cox proportional hazards analysis of candidate mRNAs and lncRNAs together with differentially expressed microRNAs, we constructed ceRNA networks, obtained 12 lncRNAs in the ceRNA networks, and revealed seven novel lncRNAs AC021016.2, AC079630.1, AC116407.1, AC125807.2, AF131215.5, LINC01936, and RHOXF1-AS1. These lncRNAs were found to be associated with overall survival rates and are suitable for the prediction of prognosis by Kaplan-Meier survival and receiver operating characteristic curve analyses. In particular, three lncRNAs—AF131215.5, AC125807.2, and LINC01936—showed an independent prognostic value of overall survival for patients with LUAD. We evaluated the diagnostic capabilities of seven lncRNAs for patients with LUAD using principal component analysis and the Gene Set Variation Analysis index. lncRNAs and crucial genes could be effectively used for distinguishing LUAD tumors from normal tissues in the Gene Expression Omnibus profile. In particular, AC021016.2 showed a significant prognostic value in the validation dataset. Our findings reveal the significance of exploring lncRNAs in cancer-related ceRNAs using bioinformatic strategies.

Funder

Traditional Chinese Medical science and technology plan of Zhejiang Province

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3