Investigation on the Fracturing Permeability Characteristics of Cracked Specimens and the Formation Mechanism of Inrush Channel from Floor

Author:

Wang Jianning12ORCID,Liu Weitao1ORCID,Shen Jianjun13ORCID

Affiliation:

1. College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

2. Shandong Pengbo Safety & Environmental Protection Services Limited, Qingdao, Shandong 266590, China

3. College of Chemical Engineering and Safety, Binzhou University, Binzhou 256600, China

Abstract

To study the fracture characteristics and the permeability change law of the cracked specimens during the complete stress-strain process, a mechanical model was constructed, from which different types of crack initiation angles were obtained. The crack inclination angles under uniaxial compression, confining compression, and confining tension, and the influence of confining pressure and pore water pressure on the crack propagation and permeability of rock mass were investigated and simulated with RFPA-Flow software using prefabricated crack models with crack initiation angles of 30°, 45°, and 60°. Furthermore, the formation mechanism of inrush channel from floor was qualitatively analyzed. The results indicated that the theoretical initiation angles of wing cracks, secondary coplanar cracks, and secondary inclined antiwing cracks were found to be 70.53°, 0°, and 123.8°, which were consistent with the simulation results. The crack propagation was mainly concentrated at the postpeak stage of the complete stress-strain curve, causing the peak of seepage velocity to lag behind the stress peak. For the case with a constant confining pressure, the rate of crack initiation and propagation to final failure was positively correlated with the internal pore pressure. For the case with a constant water pressure, the speed of crack initiation and propagation to final failure decreased first and then increased as the confining pressure increased. In addition, the longitudinal propagation of wing cracks and the increase in permeability were prone to occur in the low confining pressure zone, which induced the formation of water inrush channels. The research result provides an improved understanding for predicting and preventing water inrush disasters.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3