Numerical Simulation of the Stress Field in Repeated Mining of Coal Seams Based on In Situ Stress Measurement

Author:

Yang Donghui1ORCID,Yang Bohu1,Lv Zhaoheng1,Li Yongming1,Cheng Hongming1,Ning Zhangxuan1

Affiliation:

1. School of Coal Engineering, Shanxi Datong University, Datong 037003, China

Abstract

We established an evaluation index of the rock mass stress state for underground coal mines using the strength-stress ratio based on the measured in situ stress and the generalized Hoek–Brown strength criterion. Three in situ stress states, σcm/σ1m < 1.4 (high), 1.4 < σcm/σ1m < 3.6 (medium), and σcm/σ1m > 3.6 (low), were established based on the value of the unconfined compressive strength (σcm) and the maximum principal stress of the rock mass (σ1m). This index classifies the Burtai mine as a medium-high in situ stress field, which is in agreement with the on-site situation, establishing the reliability of the index. The working face was a three-dimensional geological model based on the log sheets. The initial conditions for the model were determined using the combined measurements of the in situ stress regression model. We performed numerical simulations of the roof stress field distribution under repeated mining. Mining the overlying coal seam leads to significant variation in the value and direction of the main roof, σ1, within the range of the front abutment pressure under the pillar and gob. Along the main roof strike direction, σ1 under the pillar is 1.5 times that under the gob, and the σ1 direction under the pillar is deflected by 5°, which is 30° smaller than that under the gob. This provides a reference for optimized underground coal mining.

Funder

Fundamental Research Program of Shanxi Province

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3