Multiview Machine Vision Research of Fruits Boxes Handling Robot Based on the Improved 2D Kernel Principal Component Analysis Network

Author:

Li Xinning1ORCID,Wu Hu1,Yang Xianhai1ORCID,Xue Peng2,Tan Shuai2

Affiliation:

1. School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China

2. National Engineering Research Center for Production Equipment, Dongying 257091, China

Abstract

In order to better realize the orchard intelligent mechanization and reduce the labour intensity of workers, the study of intelligent fruit boxes handling robot is necessary. The first condition to realize intelligence is the fruit boxes recognition, which is the research content of this paper. The method of multiview two-dimensional (2D) recognition was adopted. A multiview dataset for fruits boxes was built. For the sake of the structure of the original image, the model of binary multiview 2D kernel principal component analysis network (BM2DKPCANet) was established to reduce the data redundancy and increase the correlation between the views. The method of multiview recognition for the fruits boxes was proposed combining BM2DKPCANet with the support vector machine (SVM) classifier. The performance was verified by comparing with principal component analysis network (PCANet), 2D principal component analysis network (2DPCANet), kernel principal component analysis network (KPCANet), and binary multiview kernel principal component analysis network (BMKPCANet) in terms of recognition rate and time consumption. The experimental results show that the recognition rate of the method is 11.84% higher than the mean value of PCANet though it needs more time. Compared with the mean value of KPCANet, the recognition rate exceeded 2.485%, and the time saved was 24.5%. The model can meet the requirements of fruits boxes handling robot.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Computer Science,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3