Affiliation:
1. School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
2. National Engineering Research Center for Production Equipment, Dongying 257091, China
Abstract
In order to better realize the orchard intelligent mechanization and reduce the labour intensity of workers, the study of intelligent fruit boxes handling robot is necessary. The first condition to realize intelligence is the fruit boxes recognition, which is the research content of this paper. The method of multiview two-dimensional (2D) recognition was adopted. A multiview dataset for fruits boxes was built. For the sake of the structure of the original image, the model of binary multiview 2D kernel principal component analysis network (BM2DKPCANet) was established to reduce the data redundancy and increase the correlation between the views. The method of multiview recognition for the fruits boxes was proposed combining BM2DKPCANet with the support vector machine (SVM) classifier. The performance was verified by comparing with principal component analysis network (PCANet), 2D principal component analysis network (2DPCANet), kernel principal component analysis network (KPCANet), and binary multiview kernel principal component analysis network (BMKPCANet) in terms of recognition rate and time consumption. The experimental results show that the recognition rate of the method is 11.84% higher than the mean value of PCANet though it needs more time. Compared with the mean value of KPCANet, the recognition rate exceeded 2.485%, and the time saved was 24.5%. The model can meet the requirements of fruits boxes handling robot.
Funder
National Natural Science Foundation of China
Subject
General Computer Science,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献