Affiliation:
1. Electronic Countermeasure College, National University of Defense Technology, Hefei, Anhui, China
Abstract
In the underlay cognitive radio networks (CRNs), the power spectral density (PSD) maps play a foundational role in detecting the idle radio resources. However, it is hard to get a high-accurate PSD map estimation result because of the complicated radio environment. For this reason, we propose a novel convolutional neural network- (CNN-) based PSD map estimation algorithm named map reconstruction CNN (MRCNN). Using the CNN to estimate PSD maps for underlay CRNs has not been reported until now. First, on the basis of the proposed color mapping process, we transform the PSD map estimation task to the image reconstruction task. Then, we train the MRCNN to learn the radio environment characteristics from the training data, rather than making direct biased or imprecise wireless environment hypotheses as in the conventional methods. We utilize the extracted knowledge in the training process to reconstruct the PSD map images. As demonstrated in the simulations, the proposed MRCNN method has a better PSD map estimation performance than the conventional methods.
Funder
Technology Funds of Fundamental Research Strengthening Plan
Subject
General Engineering,General Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献